您好,欢迎访问

商机详情 -

ATPD-荧光素钾盐试剂

来源: 发布时间:2022年08月14日

    荧光素也就是FDAFDA可透过细胞膜并作为荧光素积蓄在活细胞内。由于荧光素较BCECF或Calcein的亲水性低,因此荧光素从细胞中渗漏的量也高。FDA也可用于流式细胞仪。荧光素的激发和发射波长分别为488nm和530nm。荧光素酶(英文名称:Luciferase)是自然界中能够产生生物荧光的酶的统称,其中更有代表性的是一种学名为Photinuspyralis的萤火虫体内的荧光素酶。在相应化学反应中,荧光的产生是来自于萤光素的氧化,有些情况下反应体系中也包括三磷酸腺苷(ATP)。没有荧光素酶的情况下,萤光素与氧气反应的速率非常慢,而钙离子的存在常常可以进一步加速反应(与肌肉收缩的情况相似)。[1]荧光生成反应通常分为以下两步:萤光素+ATP→萤光素化腺苷酸(luciferyladenylate)+PPi萤光素化腺苷酸+O2→氧荧光素+AMP+光这一反应非常节省能量,几乎所有输入反应的能量都被转化为光。与之形成鲜明对比的是人类使用的白炽灯,只有越10%的能量被转化为光,剩余的能量都变为热能而被浪费。荧光素或荧光素酶不是特定的分子,而是对于所有能够产生荧光的底物和其对应的酶的统称,虽然它们各不相同。不同的能够控制发光的生物体用不同的荧光素酶来催化不同的发光反应。D-荧光素钾盐测试需要哪些必备条件?ATPD-荧光素钾盐试剂

    通过开发新的方法来改变萤火虫萤光素酶检测的信号动力学,例如Bright-Glo™、Steady-Glo®和Dual-Glo®允许使用微孔板进行检测。而“加样-读数”的形式简化了样品处理,并实现了在非常高通量的应用中使用报告基因检测。[1]随着UltraGlo™萤光素酶的发展,现在已经实现了“加样-读数”的ATP检测方法。ATP是细胞健康的重要指标,这使得CellTiter-Glo®能有效测定细胞活力,尤其是在高通量应用中。该检测原理还促进了其它ATP检测平台的诞生,尤其是用于研究ATP酶(如激酶)的Kinase-Glo®(2004年)和ADP-Glo™(2009年)酶检测系统。[1]2003Caspase-Glo®3/7检测除了可以利用萤火虫萤光素酶反应测定样品中萤光素酶或ATP的含量外,还可以检测底物(luciferin)浓度的变化。通过将luciferin与可被不同酶类识别并产生反应的保护基团偶联,能对这些酶进行灵敏的“加样-读数”检测,如半胱天冬酶(caspase)和其它蛋白酶。[1]2007One-Glo™萤光素酶检测系统随着对萤火虫萤光素酶化学反应的进一步了解以及Promega生物学家和化学家团队的建立,一种改进的luciferin面世,能更好地用于典型的报告基因检测应用。这种新的底物——fluoroluciferin。ATPD-荧光素钾盐试剂D-荧光素钾盐使用的是什么技术?

    请穿实验服并戴一次性手套操作。8)本产品只作科研用途!D-荧光素钾盐是荧光素酶的水溶性底物,存在于多种发光生物体中。在ATP和荧光素酶的催化作用下,D-荧光素钾被氧化,产生蓝绿色的光(560nm),当底物过量时,产生的Chemicalbook光量子数与荧光素酶的浓度呈正相关。编码荧光素酶的Luc基因是植物、哺乳动物细胞的常用报告基因。由于没有背景干扰,因此可以很容易地检测出低至。用途D-荧光素钾盐是一类在生物体中发现的能引起生物发光的杂环化合物,如萤火虫。在ATP存在下,萤光素酶将其氧化脱羧后会发光。化学研究中可用于荧光素酶的基板。生物活性D-Luciferin是萤火虫荧光素酶的底物。体外研究D-luciferinisthenaturalsubstrateoftheenzymeluciferase(Luc),μM.体内研究Bioluminescenceimaging(BLI)usingthefireflyluciferase(Fluc)(5,10,15,and20min)μLofD-luciferin(intraperitoneallyorintravenously)stocksolutionpergramofbodyweight:normally~200μLfora20gmouseforastandard150mg/(eitherPotassiumorSodiumSalt)atroomtemperatureanddissolveindPBS。

    我们将与LgBiT具有极强亲和作用的。HiBiT作为一种易于检测且具有高灵敏度的蛋白质标签,具有多种功能,例如当与基于CRIPSR的标签一起使用时,可以创建内源性报告基因模型。[1]2020Lumit™技术随着NanoBiT®技术的发展,人们认识到可以利用该系统通过结合免疫测定的组分检测多种分析物。由此产生的平台(现称为“Lumit”)提供了具有高灵敏度的简化免疫检测法。萤光素酶(英语:Luciferase)是自然界中能够产生生物发光的酶的统称,其中**有代表性的是一种学名为Photinuspyralis的萤火虫体内的萤光素酶。在相应化学反应中,荧光的产生是来自于萤光素的氧化,有些情况下反应体系中也包括三磷酸腺苷(ATP)。没有萤光素酶的情况下,萤光素与氧气反应的速率非常慢,而钙离子的存在常常可以进一步加速反应(与肌肉收缩的情况相似)。萤光生成反应通常分为以下两步:萤光素+ATP→萤光素化腺苷酸(luciferyladenylate)+PPi萤光素化腺苷酸+O2→氧萤光素+AMP+光这一反应非常节省能量,几乎所有输入反应的能量都被转化为光。与之形成鲜明对比的是人类使用的白炽灯,只有约10%的能量被转化为光,剩余的能量都变为热能而被浪费。萤光素或萤光素酶不是特定的分子。做D-荧光素钾盐测试真的靠谱吗?

    而发出不同颜色的荧光。萤火虫有2000多种,而叩甲总科(包括萤火虫、叩头虫和相关昆虫)则有更多,因此它们的荧光素酶对于分子系统学研究很有用。目前研究得更透彻的荧光素酶是来自Photinini族萤火虫中的北美萤火虫(Photinuspyralis)。荧光素酶报告基因(Luc)是指以荧光素(luciferin)为底物来检测萤火虫荧光素酶(fireflyluciferase)活性的一种报告系统。荧光素酶可以催化luciferin氧化oxyluciferin,在luciferin氧化的过程中,会发出生物荧光(bioluminescence)。荧光素酶是能够催化不同底物氧化发光的一类酶,哺乳细胞无内源性荧光素酶。更常用的荧光素酶有细菌荧光素酶、萤火虫荧光素酶和Renilla荧光素酶。细菌荧光素酶对热敏感,因此在哺乳细胞的应用中受到限制。萤火虫荧光素酶灵敏度高,检测线性范围宽达7~8个数量级,是更常用于哺乳细胞的报道基因,用荧光比色计即可检测酶活性,因而适用于高通量筛选。随着具有膜通透性和光裂解作用的萤火虫荧光素酶的应用,无需裂解细胞即可检测酶活性。Renilla荧光素酶催化肠腔(coelenterazine)氧化,产物可透过生物膜,可能是更适用于活细胞的报告分子。将荧光素酶报告基因载体转染到细胞中。D-荧光素钾盐检测公司招代理吗?常州荧光素钠盐D-荧光素钾盐应用

D-荧光素钾盐适用于哪些领域?ATPD-荧光素钾盐试剂

    这是一种小分子(19kDa)单体酶,具有独特的底物,其灵敏度比已具备高灵敏度的萤火虫或海肾萤光素酶系统高约100倍。这种新型的报告基因有着***的应用前景,为进一步的技术开发奠定了基础。[1]2015NanoBRET™技术NanoLuc®的小体积和非常明亮的光输出是作为蛋白质标签的理想特征。这些特征还很适合作为生物发光共振能量转移(BRET)的供体。一项针对各种能量受体荧光基团的深入研究发现,红色光谱中的可选择性有助于消除与BRET测定相关的一些挑战。可将这些荧光基团添加到蛋白质配基等分子中以测量靶蛋白的结合,或与HaloTag®配基耦联以进行活细胞中蛋白质:蛋白质相互作用的检测。[1]2016NanoBiT®技术随着NanoLuc®的诞生,Promega的科学家努力将该报告基因改造为多亚基系统,即“NanoLuc®BinaryTechnology”或NanoBiT®。该系统由两部分组成:11个氨基酸的小标签和一个更大,更精细的NanoLuc®亚基,LgBiT。这两部分结构互补结合,重组为一个明亮的萤光素酶。这些亚基的亲和力可以和SmBiT肽一样低,从而可以进行蛋白质相互作用的测定;也可以和HiBiT一样高,从而允许自我组装。[1]2017HiBiT®技术基于NanoBiT®系统的研究。ATPD-荧光素钾盐试剂