您好,欢迎访问
标签列表 - ***公司
  • 谁能告知东莞铂信用德国哪家的质子交换膜

    对于负载催化剂,金属-载体相互作用和基底的导电性至关重要。酸性OER材料发展,并强调从机理分析性能提高.对金属性质(合金,单原子等)催化剂,氧化物(钌/铱氧化物,非贵金属氧化物),金属氧酸盐类(钙钛矿,烧绿石,其它氧酸盐类),其它无机金属和非金属材料进行周到综述。在酸性介质中贵金属Ru和Ir基催化剂具有优异的活性和可应用性,优于其他铂族金属(如Rh、Pd和Pt).尽可能多地暴露活性位点,提高本征活性,氢健康以尽量减少贵金属消耗,同时兼顾长期运行的稳定性是催化剂设计必须面临的问题。电解槽可以实现对风电、水电、光伏电等电力能源的调峰运行和对弃电资源的充分利用。谁能告知东莞铂信用德国哪家的质子交换膜...

  • 是否有报道派瑞氢能使用谁家的质子交换膜

    综合活性和稳定性等因素,目前工业上选用的PEM电解槽阳极催化剂以铱黑以及IrO2等为主。不同催化材料的阳极过电势通常为200~500mV。在高电位、氧化、酸性环境下,PEM电解槽对阳极催化剂材料的要求极为苛刻,氢健康能满足该要求的催化材料但限于某些贵金属。通常,活性越高的金属,其在水电解过程中越容易溶解,稳定性越差。例如:从金属活性角度来讲,氢健康金属活性由高到低的顺序为Os>Ru>Ir>Pt>Au;但从金属稳定性角度来讲,其稳定性由高到低的顺序为Au>Pt>Ir>Ru>Os。目前PEM水电解制氢技术已在加氢站现场制氢、储能等领域得到示范应用并逐步推广。是否有报道派瑞氢能使用谁家的质子交换膜阳...

    发布时间:2023.07.04
  • 谁知道ITM用的质子交换膜

    目前,全世界的氢主要消费方向以石油炼制、化工原料为主。根据中国氢能联盟研究院发布的数据,当单位制氢的碳排放(CO2)不高于4.9kg?kg时,制备的氢气才是清洁的煤制氢的碳排放强度接近风电、水电制氢的20倍,天然气制氢的碳排放强度也很高,两种方式制氢的碳排放均远超清洁制氢的碳排放标准;而以可再生资源发电,进行水电解制氢则能够满足清洁氢气的碳排放标准。需要强调的是,采用水电解制氢时,只有利用可再生能源电力制取的氢气才满足低碳排放的标准;而利用不可再生能源电力制取的氢气,从全生命周期来看,同样存在碳排放量大的问题。因此,氢健康水电解制氢是否属于清洁氢,要根据电网电力的种类来判断。现阶段,氢气主要用...

  • 谁能告知赛克赛斯怎样测试质子交换膜

    目前,全世界的氢主要消费方向以石油炼制、化工原料为主。根据中国氢能联盟研究院发布的数据,当单位制氢的碳排放(CO2)不高于4.9kg?kg时,制备的氢气才是清洁的煤制氢的碳排放强度接近风电、水电制氢的20倍,天然气制氢的碳排放强度也很高,两种方式制氢的碳排放均远超清洁制氢的碳排放标准;而以可再生资源发电,进行水电解制氢则能够满足清洁氢气的碳排放标准。需要强调的是,采用水电解制氢时,只有利用可再生能源电力制取的氢气才满足低碳排放的标准;而利用不可再生能源电力制取的氢气,从全生命周期来看,同样存在碳排放量大的问题。因此,氢健康水电解制氢是否属于清洁氢,要根据电网电力的种类来判断。现阶段,氢气主要用...

  • 有谁知道普顿如何规划质子交换膜电堆

    质子交换膜电解水水电解器(PEMWE)技术在可再生能源的电催化制氢方面受到关注。它具有立即响应、更高的质子电导率、更低的欧姆损耗和气体交叉率的优点。借助创新的实验方法和先进的表征技术,在揭示酸性介质中动态OER的复杂性和开发高效稳定的电催化剂方面取得了重要成果。本综述重点介绍了在酸性介质中开发OER电催化剂的反应和降解机制以及较新进展。此外,还在设备层面讨论了PEM水电解的进展。然而,氢健康所开发的催化剂及相关装置的性能与工业应用仍有一定差距。现阶段,CO2捕集、封存技术(CCS)和CO2捕集、利用、封存技术因成本过高,暂时不具备经济性。有谁知道普顿如何规划质子交换膜电堆为了加快PEMWE的发...

    发布时间:2023.07.03
  • 可否知道718研究所使用谁家的质子交换膜

    在酸性介质中贵金属Ru和Ir基催化剂具有优异的活性和可应用性,优于其他铂族金属(如Rh、Pd和Pt).尽可能多地暴露活性位点,提高本征活性,以尽量减少贵金属消耗,同时兼顾长期运行的稳定性是催化剂设计必须面临的问题。氢健康对于负载催化剂,金属-载体相互作用和基底的导电性至关重要。本节讨论酸性OER材料发展,并强调从机理分析性能提高.对金属性质(合金,单原子等)催化剂,氧化物(钌/铱氧化物,非贵金属氧化物),金属氧酸盐类(钙钛矿,烧绿石,其它氧酸盐类),其它无机金属和非金属材料进行周到综述。PEM电解槽对阳极催化剂材料的要求极为苛刻,能满足该要求的催化材料但限于某些贵金属。可否知道718研究所使用...

    发布时间:2023.07.03
  • 甲醇质子交换膜

    质子交换膜(PEM)在氢燃料电池、电解水制氢气等领域中所交换的阳离子为质子,氢健康又被称为离子膜。质子交换膜处于有机氟化工产业链末端,其上游是有机氟化工的单体材料,下游是基于质子交换膜的氯碱工业、燃料电池、电解水、储能电池等应用领域。目前产业化应用的均为全氟质子交换膜,质子交换膜使用的是全氟磺酸树脂,离子膜使用全氟磺酸树脂、全氟羧酸树脂的复合膜。全氟磺酸树脂具有强酸性,全氟羧酸树脂具有弱酸性,更能够适应氯碱工业中的碱性环境。尽管目前全氟磺酸PEM应用较普遍,但仍存在成本较高、尺寸稳定性较差、温度升高会降低质子传导性的缺点。PEM水电解槽采用PEM传导质子,隔绝电极两侧的气体,避免AWE使用强碱...

  • 可否知道718研究所怎样测试质子交换膜

    质子交换膜电解水水电解器(PEMWE)技术在可再生能源的电催化制氢方面受到关注。它具有立即响应、更高的质子电导率、更低的欧姆损耗和气体交叉率的优点。借助创新的实验方法和先进的表征技术,在揭示酸性介质中动态OER的复杂性和开发高效稳定的电催化剂方面取得了重要成果。本综述重点介绍了在酸性介质中开发OER电催化剂的反应和降解机制以及较新进展。此外,还在设备层面讨论了PEM水电解的进展。然而,氢健康所开发的催化剂及相关装置的性能与工业应用仍有一定差距。随着日益增长的低碳减排需求,氢的绿色制取技术受到普遍重视。可否知道718研究所怎样测试质子交换膜分析氧反应(OER)在水分解,CO2还原和可再生电燃料电...

    发布时间:2023.07.03
  • 谁能告知国电投使用谁家的质子交换膜

    水电解槽制氢设备开发是国内外碱性水电解制氢研究热点。可再生能源加速发展使得大规模消纳可再生能源成为突出问题。碱性水电解制氢电解槽隔膜主要由石棉组成,起分离气体的作用。阴极、阳极主要由金属合金组成,如Ni-Mo合金等,分解水产生氢气和氧气。氢健康工业上碱性水电解槽的电解液通常采用KOH溶液,质量分数20%~30%,电解槽操作温度70~80℃,工作电流密度约0.25A/cm2,产生气体压力0.1~3.0MPa,总体效率62%~82%。碱性水电解制氢技术成熟,投资、运行成本低,但存在碱液流失、腐蚀、能耗高等问题。通常阳极反应过电势远远高于阴极反应过电势。谁能告知国电投使用谁家的质子交换膜PEM水电解...

    发布时间:2023.07.02
  • 哪里可知上海应用所使用谁家的质子交换膜

    区别于碱性水电解制氢,PEM水电解制氢选用具有良好化学稳定性、质子传导性、气体分离性的全氟磺酸质子交换膜电解水电解水作为固体电解质替代石棉膜,能有效阻止电子传递,提高电解槽安全性。PEM水电解槽主要部件由内到外依次是质子交换膜电解水电解水、阴阳极催化层、阴阳极气体扩散层、阴阳极端板等。其中扩散层、催化层与质子交换膜电解水电解水组成膜电极,是整个水电解槽物料传输以及电化学反应的主场所,氢健康膜电极特性与结构直接影响PEM水电解槽的性能和寿命。将可再生能源发电转化为氢气,可提高电力系统灵活性,正成为可再生能源发展和应用的重要方向。利用西北、西南、东北等区域丰富的可再生能源,通过电解水制氢产生高压氢...

    发布时间:2023.07.02
  • 谁能推荐718研究所用的质子交换膜

    为了加快PEMWE的发展,深入理解电极反应的动态过程,理论计算和实验的结合,对具有实际应用前景的催化剂的进一步发展,催化剂性能的评价准则,对实验室基础研究中水系模型和实际操作差异的理解,集成膜电极组件的开发需要更多的研究。氢健康PEMWE的组装方法,实际运行条件,包括离聚物,膜,气体扩散层,极板,催化剂层在内的各个组分都是影响PEMWE性能的关键参数.对各个组分的发展和应用现状进行综述,同时对有实际应用前景的催化剂进行分析,包括负载型催化剂,铱/钌为主体的掺杂型催化剂。借助创新实验方法和先进表征技术发展在揭示酸介质中动态OER的复杂性和开发高效稳定的电催化剂方面取得了重要成就。但所开发的催化剂...

  • 哪里可知上海应用所怎样测试质子交换膜

    水电解槽制氢设备开发是国内外碱性水电解制氢研究热点。可再生能源加速发展使得大规模消纳可再生能源成为突出问题。碱性水电解制氢电解槽隔膜主要由石棉组成,起分离气体的作用。阴极、阳极主要由金属合金组成,如Ni-Mo合金等,分解水产生氢气和氧气。氢健康工业上碱性水电解槽的电解液通常采用KOH溶液,质量分数20%~30%,电解槽操作温度70~80℃,工作电流密度约0.25A/cm2,产生气体压力0.1~3.0MPa,总体效率62%~82%。碱性水电解制氢技术成熟,投资、运行成本低,但存在碱液流失、腐蚀、能耗高等问题。PEM水电解制氢已步入商业化早期,制约技术大规模发展的瓶颈在于膜电极选用被少数厂家垄断的...

  • 可否知道康明斯使用谁家的质子交换膜

    作为媒介氢气促进可再生能源时空再分布,助力电力系统与难以深度脱碳的工业、建筑和交通运输部门建立起产业联系,不断丰富氢气的应用场景。这也为PEM水电解制氢技术带来巨大的发展空间。相比PEM水电解,AEM水电解选用固体聚合物阴离子交换膜作为隔膜材料,膜电极催化剂、双极板材料可选性更宽广,未来突破阴离子交换膜和高活性非贵金属催化剂等关键材料有望明显降低电解槽制造成本。氢健康应用推广方面,当下电力系统中波动性可再生能源份额不断上升,未来几十年这一趋势仍将延续。可再生能源制氢是单独绿色低碳制氢方式,不但能提高电网灵活性,而且可远距离运输和分配可再生能源,支持可再生能源更大规模的发展。根据电解槽隔膜材料的...

    发布时间:2023.06.29
  • 质子交换膜销售厂家

    目前,全世界的氢主要消费方向以石油炼制、化工原料为主。根据中国氢能联盟研究院发布的数据,当单位制氢的碳排放(CO2)不高于4.9kg?kg时,制备的氢气才是清洁的煤制氢的碳排放强度接近风电、水电制氢的20倍,天然气制氢的碳排放强度也很高,两种方式制氢的碳排放均远超清洁制氢的碳排放标准;而以可再生资源发电,进行水电解制氢则能够满足清洁氢气的碳排放标准。需要强调的是,采用水电解制氢时,只有利用可再生能源电力制取的氢气才满足低碳排放的标准;而利用不可再生能源电力制取的氢气,从全生命周期来看,同样存在碳排放量大的问题。因此,氢健康水电解制氢是否属于清洁氢,要根据电网电力的种类来判断。现阶段,氢气主要用...

    发布时间:2023.06.29
  • 标准质子交换膜

    Ir资源储量能否支撑整个PEM水电解制氢技术的未来发展,成为业内普遍关注的焦点,国外机构对此进行了相关研究预测。按照目前用量水平来计算,膜电极上的Ir用量为2mg/cm2,而膜电极典型运行参数为4W/cm2,因而1GW级PEM电解槽的Ir用量为500kg。虽然Ir阳极催化剂成本在整个电解槽成本中占比不大,但若未来PEM水电解制氢技术大规模普及,其需求量会大幅度上升。目前,全世界Ir产量少于9t?a,因此氢健康在PEM水电解技术大规模应用后,阳极催化剂的成本占比会逐渐提升。过去5年电解槽成本已下降了40%,这与目前析氧、析氢电催化剂只能选用贵金属材料密切相关。标准质子交换膜水电解槽制氢设备开发是...

    发布时间:2023.06.29
  • 可否知道Mcphy使用谁家的质子交换膜

    不同催化材料的阳极过电势通常为200~500mV。在高电位、氧化、酸性环境下氢健康,PEM电解槽对阳极催化剂材料的要求极为苛刻,能满足该要求的催化材料但限于某些贵金属。通常,活性越高的金属,其在水电解过程中越容易溶解,稳定性越差。例如:从金属活性角度来讲,金属活性由高到低的顺序为Os>Ru>Ir>Pt>Au;但从金属稳定性角度来讲,其稳定性由高到低的顺序为Au>Pt>Ir>Ru>Os。综合活性和稳定性等因素,目前工业上选用的PEM电解槽阳极催化剂以铱黑以及IrO2等为主。CCM法催化剂利用率更高,大幅降低膜与催化层间的质子传递阻力,是膜电极制备的主流方法。可否知道Mcphy使用谁家的质子交换膜...

  • 哪里可知中电丰业用德国哪家的质子交换膜

    区别于碱性水电解制氢氢健康,PEM水电解制氢选用具有良好化学稳定性、质子传导性、气体分离性的全氟磺酸质子交换膜作为固体电解质替代石棉膜,能有效阻止电子传递,提高电解槽安全性。PEM水电解槽主要部件由内到外依次是质子交换膜、阴阳极催化层、阴阳极气体扩散层、阴阳极端板等。其中扩散层、催化层与质子交换膜组成膜电极,是整个水电解槽物料传输以及电化学反应的主场所,膜电极特性与结构直接影响PEM水电解槽的性能和寿命。将可再生能源发电转化为氢气,可提高电力系统灵活性,正成为可再生能源发展和应用的重要方向。高温高湿的工作环境使电解槽选择稳定性高、持久性好、耐衰减的材料受到限。哪里可知中电丰业用德国哪家的质子交...

    发布时间:2023.06.26
  • 谁能告知Nel如何规划质子交换膜电堆

    相比PEM水电解,AEM水电解选用固体聚合物阴离子交换膜作为隔膜材料,膜电极催化剂、双极板材料可选性更宽广,未来突破阴离子交换膜和高活性非贵金属催化剂等关键材料有望明显降低电解槽制造成本。应用推广方面,当下电力系统中波动性可再生能源份额不断上升,氢健康未来几十年这一趋势仍将延续。可再生能源制氢是单独绿色低碳制氢方式,不但能提高电网灵活性,而且氢健康可远距离运输和分配可再生能源,支持可再生能源更大规模的发展。作为媒介氢气促进可再生能源时空再分布,助力电力系统与难以深度脱碳的工业、建筑和交通运输部门建立起产业联系,不断丰富氢气的应用场景。这也为PEM水电解制氢技术带来巨大的发展空间。PEM水电解槽...

  • 怎样知道中科科创如何规划质子交换膜电堆

    随着可再生能源发电装机容量不断上升、比例不断增加、可再生能源电力价格不断下降;同时,结合碳税、碳交易等利好政策,水电解制氢的经济性将明显提高;而且,利用可再生能源电力的水电解制氢具备几乎碳零排放的优势,因此在各种制氢方式中,氢健康水电解制氢的占比将大幅提升,成为实现“双碳”目标的重要抓手。现阶段,CO2捕集、封存技术(CCS)和CO2捕集、利用、封存技术(CCUS)因成本过高,暂时不具备经济性。而为了实现“碳达峰”和“碳中和”目标,未来以化石能源制氢的方式势必要受到限制或部分被清洁制氢方式取代。降低催化剂与电解槽的材料成本,是PEM水电解制氢技术发展的研究重点。怎样知道中科科创如何规划质子交换...

    发布时间:2023.06.26
  • 是否有报道大连化物所用的质子交换膜

    PEM水电解制得的氢气纯度高氢健康,而且其制氢负荷可以实现在0~1之间智能连续自动化控制,因而PEM水电解制氢逐步取代了传统的碱水制氢和氢气瓶组等方式。由于氢气可以大规模长时间存储,相对于其他储能方式,在时间尺度和规模尺度上均有明显优势;结合可再生能源电力的波动性,可以充分发挥氢气的储能优点,并实现大规模低成本制氢。在PEM水电解过程中,电解槽阳极的析氧反应是该过程的速控步骤。阳极反应过电势与阴极反应过电势的大小,是水电解制氢效率高低的主要影响因素之一,通常阳极反应过电势远远高于阴极反应过电势。可再生能源制氢是单独绿色低碳制氢方式,不但能提高电网灵活性,而且可远距离运输和分配可再生能源。是否有...

    发布时间:2023.06.22
  • 怎么质子交换膜

    在技术层面,电解水制氢主要分为AWE、PEM水电解,固体聚合物阴离子交换膜(AEM)水电解、固体氧化物(SOE)水电解。其中,AWE是较早工业化的水电解技术,已有数十年的应用经验,较为成熟;PEM电解水技术近年来产业化发展迅速,SOE水电解技术处于初步示范阶段,而AEM水电解研究刚起步。氢健康从时间尺度上看,AWE技术在解决近期可再生能源的消纳方面易于快速部署和应用;但从技术角度看,PEM电解水技术的电流密度高、电解槽体积小、运行灵活、利于快速变载,与风电、光伏(发电的波动性和随机性较大)具有良好的匹配性。随着PEM电解槽的推广应用,其成本有望快速下降,必然是未来5~10a的发展趋势。SOE、...

    发布时间:2023.06.22
  • 进口质子交换膜

    随着日益增长的低碳减排需求,氢的绿色制取技术受到普遍重视,利用可再生能源进行电解水制氢是目前众多氢气来源方案中碳排放较低的工艺。本文梳理了氢能需求和规划的进展、电解水制氢的示范项目情况,重点分析了电解水制氢技术,涵盖技术分类、碱水制氢应用、质子交换膜(PEM)电解水制氢。研究认为,提升电催化剂活性、提高膜电极中催化剂的利用率、改善双极板表面处理工艺、优化电解槽结构,有助于提高PEM电解槽的性能并降低设备成本;PEM电解水制氢技术的运行电流密度高、能耗低、产氢压力高,适应可再生能源发电的波动性特征、易于与可再生能源消纳相结合,是电解水制氢的适宜方案。氢健康结合氢储运与电解制氢的技术特征研判、我国...

    发布时间:2023.06.22
  • 谁能告知淳华氢能怎样测试质子交换膜

    PEM水电解制得的氢气纯度高氢健康,而且其制氢负荷可以实现在0~1之间智能连续自动化控制,因而PEM水电解制氢逐步取代了传统的碱水制氢和氢气瓶组等方式。由于氢气可以大规模长时间存储,相对于其他储能方式,在时间尺度和规模尺度上均有明显优势;结合可再生能源电力的波动性,可以充分发挥氢气的储能优点,并实现大规模低成本制氢。在PEM水电解过程中,电解槽阳极的析氧反应是该过程的速控步骤。阳极反应过电势与阴极反应过电势的大小,是水电解制氢效率高低的主要影响因素之一,通常阳极反应过电势远远高于阴极反应过电势。理想电催化剂应具有抗腐蚀性、良好的比表面积、电子导电性、电化学稳定性以及成本低廉、环境友好等特征。谁...

    发布时间:2023.06.16
  • 怎样知道ITM如何规划质子交换膜电堆

    综合活性和稳定性等因素,目前工业上选用的PEM电解槽阳极催化剂以铱黑以及IrO2等为主。不同催化材料的阳极过电势通常为200~500mV。在高电位、氧化、酸性环境下,PEM电解槽对阳极催化剂材料的要求极为苛刻,氢健康能满足该要求的催化材料但限于某些贵金属。通常,活性越高的金属,其在水电解过程中越容易溶解,稳定性越差。例如:从金属活性角度来讲,氢健康金属活性由高到低的顺序为Os>Ru>Ir>Pt>Au;但从金属稳定性角度来讲,其稳定性由高到低的顺序为Au>Pt>Ir>Ru>Os。资源储量能否支撑整个PEM水电解制氢技术的未来发展,成为业内普遍关注的焦点。怎样知道ITM如何规划质子交换膜电堆SOE...

    发布时间:2023.06.16
  • 是否有报道Giner用的质子交换膜

    膜电极中析氢、析氧电催化剂对整个水电解制氢反应十分重要。理想电催化剂应具有抗腐蚀性、良好的比表面积、气孔率、催化活性、电子导电性、电化学稳定性以及成本低廉、环境友好等特征。阴极析氢电催化剂处于强酸性工作环境,易发生腐蚀、团聚、流失等问题,为保证电解槽性能和寿命,析氢催化剂材料选择耐腐蚀的Pt、Pd贵金属及其合金为主。现有商业化析氢催化剂Pt载量为0.4~0.6mg/cm2,贵金属材料成本高,阻碍PEM水电解制氢技术快速推广应用。为此降低贵金属Pt、Pd载量,开发适应酸性环境的非贵金属析氢催化剂成为研究热点。由于资源的回收利用,资源的累计需求增长率不断减小,到2070年Ir的需求量为2t左右,增...

    发布时间:2023.06.16
  • 谁能推荐高成绿能用的质子交换膜

    过去5年电解槽成本已下降了40%,但是投资和运行成本高仍然是PEM水电解制氢亟待解决的主要问题,这与目前析氧、析氢电催化剂只能选用贵金属材料密切相关。为此降低催化剂与电解槽的材料成本,特别是阴、阳极电催化剂的贵金属载量,提高电解槽的效率和寿命,是PEM水电解制氢技术发展的研究重点。与碱性水电解制氢相比,PEM水电解制氢工作电流密度更高(˃1A/cm2),总体效率更高(74%~87%),氢健康氢气体积分数更高(>99·99%),产气压力更高(3~4MPa),动态响应速度更快,能适应可再生能源发电的波动性,被认为是极具发展前景的水电解制氢技术。目前PEM水电解制氢技术已在加氢站现场制氢、风电等可再...

  • 哪里可以买到上海应用所用的质子交换膜

    作为媒介氢气促进可再生能源时空再分布,助力电力系统与难以深度脱碳的工业、建筑和交通运输部门建立起产业联系,不断丰富氢气的应用场景。这也为PEM水电解制氢技术带来巨大的发展空间。相比PEM水电解,AEM水电解选用固体聚合物阴离子交换膜作为隔膜材料,膜电极催化剂、双极板材料可选性更宽广,未来突破阴离子交换膜和高活性非贵金属催化剂等关键材料有望明显降低电解槽制造成本。氢健康应用推广方面,当下电力系统中波动性可再生能源份额不断上升,未来几十年这一趋势仍将延续。可再生能源制氢是单独绿色低碳制氢方式,不但能提高电网灵活性,而且可远距离运输和分配可再生能源,支持可再生能源更大规模的发展。在PEM水电解技术大...

  • 富氢质子交换膜制取

    现阶段,CO2捕集、封存技术(CCS)和CO2捕集、利用、封存技术(CCUS)因成本过高,暂时不具备经济性。而为了实现“碳达峰”和“碳中和”目标,未来以化石能源制氢的方式势必要受到限制或部分被清洁制氢方式取代。氢健康随着可再生能源发电装机容量不断上升、比例不断增加、可再生能源电力价格不断下降;同时,结合碳税、碳交易等利好政策,水电解制氢的经济性将明显提高;而且,利用可再生能源电力的水电解制氢具备几乎碳零排放的优势,因此在各种制氢方式中,水电解制氢的占比将大幅提升,成为实现“双碳”目标的重要抓手。现阶段,CO2捕集、封存技术(CCS)和CO2捕集、利用、封存技术因成本过高,暂时不具备经济性。富氢...

  • 质子交换膜只能用氢离子配平吗

    PEM水电解槽采用PEM传导质子,隔绝电极两侧的气体,避免AWE使用强碱性液体电解质所伴生的缺点。PEM水电解槽以PEM为电解质,以纯水为反应物,加之PEM的氢气渗透率较低,产生的氢气纯度高,但需脱除水蒸气;电解槽采用零间距结构,欧姆电阻较低,明显提高电解过程的整体效率,且体积更为紧凑;压力调控范围大,氢气输出压力可达数兆帕,适应快速变化的可再生能源电力输入。氢健康因此,PEM电解水制氢是极具发展前景的绿色制氢技术路径。由于PEM电解槽的阳极处于强酸性环境(pH≈2)、电解电压为1.4~2.0V,多数非贵金属会腐蚀并可能与PEM中的磺酸根离子结合,进而降低PEM传导质子的能力。PEM电解槽的电...

    发布时间:2023.06.13
  • 谁知道中电丰业如何规划质子交换膜电堆

    氢健康氢利用的途径主要是燃料电池移动动力、分布式电站、化工加氢,新兴发展的是氢燃料汽轮机、氢气冶金等。氢能的利用需要从制氢开始,由于氢气在自然界极少以单质形式存在,需要通过工业过程制取。氢气的来源分为工业副产氢、化石燃料制氢、电解水制氢等途径,差别在于原料的再生性、CO2排放、制氢成本。目前,世界上超过95%的氢气制取来源于化石燃料重整,生产过程必然排放CO2;约4%~5%的氢气来源于电解水,生产过程没有CO2排放。制氢过程按照碳排放强度分为灰氢(煤制氢)、蓝氢(天然气制氢)、绿氢(电解水制氢、可再生能源)。氢能产业发展初衷是零碳或低碳排放,因此灰氢、蓝氢将会逐渐被基于可再生能源的绿氢所替代,...

    发布时间:2023.06.13
1 2 3 4 5