您好,欢迎访问

商机详情 -

湖北uasb厌氧罐优势

来源: 发布时间:2023年11月14日

UASB由污泥反应区、气液固三相分离器(包括沉淀区)和气室三部分组成。在底部反应区内存留大量厌氧污泥,具有良好的沉淀性能和凝聚性能的污泥在下部形成污泥层。要处理的污水从厌氧污泥床底部流入与污泥层中污泥进行混合接触,污泥中的微生物分解污水中的有机物,把它转化为沼气。沼气以微小气泡形式不断放出,微小气泡在上升过程中,不断合并,逐渐形成较大的气泡,在污泥床上部由于沼气的搅动形成一个污泥浓度较稀薄的污泥和水一起上升进入三相分离器,沼气碰到分离器下部的反射板时IC反应器把四个重要的工艺过程集中在同一个厌氧反应器内,这个工艺过程是:进液和混合-布水系统。湖北uasb厌氧罐优势

其主要构造特点是:下部为厌氧污泥床,与UASB反应器下部的污泥床相同,上部为厌氧滤池(AF)相似的填料过滤层,填料层上可附着大量的厌氧微生物,这样子提高了整个反应器的生物量,提高反应器的处理能力和抗冲击能力。结构形式见图强汇总!13种厌氧生物反应器原理与结构图!厌氧生物滤池(AnaerobicBiofilter,简称AF)。这种工艺是在传统厌氧活性污泥法基础上发展起来的。反应器由五部分组成,即池底进水布水系统、池底布水系统与滤料层之间的污泥层、生物填料、池面出水补水系统、以及沼气收集系统。新疆ic内循环厌氧罐工厂外循环厌氧反应器充分利用了厌氧颗粒污泥技术。

IC反应器把四个重要的工艺过程集中在同一个厌氧反应器内,这个工艺过程是:内循环系统。在上升管中,气提原理使气、水、污泥混合物快速上升,气体在反应器顶部分离之后,剩余的泥水混合物经过一个同心的管道向下面入反应器底部,由此在反应器内形成循环流。气提动力来自于上升的和返回的泥水混合物中气体含量的巨大差别,因此,这个泥水混合物的内循环不需要任何外加动力。有趣的是,这个循环流的流量随着进液中COD的量的增大而增大,因此IC反应器具有自我调节的作用,即在高负荷条件下,产生更多的气体,从而也产生更多的循环水量,导致更大程度的进水的稀释。这对于稳定的运行意义重大。

IC反应器把四个重要的工艺过程集中在同一个厌氧反应器内,这个工艺过程是:进液和混合-布水系统。废水经供料泵进入反应器内,并与从IC反应器上部返回的循环水有效混合,由此产生对进液的稀释和均质作用,提高系统的抗冲击能力。流化床反应室。通过布水器后,废水和颗粒污泥混合物在进水与循环水的共同推动下,迅速进入流化床室。废水和污泥之间产生强烈和有效的接触,这导致很高的污染物向生物物质(即颗粒污泥)的传质速率。在流化床反应室内,废水中的绝大部分可生物降解的污染物被转化为沼气。这些沼气在被一级三相分离器处收集并导入气体上升管,通过这个上升管部分泥水混合物被传送到反应器较上部的气液分离器,气体分离后从反应器导出。厌氧反应器具有很高的容积负荷率,抗冲击负荷能力强。

厌氧反应器:厌氧消化中非产甲烷菌降解有机物的过程可产生大量的VFA和CO2,明显降低系统pH;而产甲烷菌则在利用乙酸、甲酸、氢形成甲烷的过程中消耗有机酸和CO2。两者的共同作用可使反应体系内pH稳定在一个适宜的范围内,并使废水中COD顺利地降解为甲烷、CO2而去除。然而,相对于非产甲烷菌而言,产甲烷菌对温度、pH、氧化还原电位(ORP)、碱度及有毒物质等均很敏感,各种生态因子的生态幅均较窄,对生态因子的要求更加苛刻。所以当系统中温度、pH、ORP等生态因子或有机负荷剧烈变化时,产甲烷菌的活性会受到一定程度抑制,而非产甲烷菌活性所受的影响较小,其产生的VFA不能全部被产甲烷菌利用,使得厌氧体系内VFA大量积累,两大类细菌的代谢平衡被破坏。因而温度、pH、ORP、有机负荷等条件均导致厌氧酸化现象的产生。厌氧反应器容积负荷率高出普通UASB反应器3倍左右。河北升流式厌氧罐工厂

厌氧反应器的设计应该是只要污泥层没有膨胀到沉淀器,污泥颗粒或絮状污泥就能滑回到反应室。湖北uasb厌氧罐优势

UASB反应器的构成:USAB反应器包括进水和配水系统、反应器的池体和三相分离器。如果考虑整个厌氧系统,还应该包括沼气收集和利用系统。但是由于沼气利用的途径和目标不确定,其利用系统也有很大的差别。在USAB反应器中较重要的设备是三相分离器,这一设备安装在反应器的顶部并将反应器分为下部的反应区和上部的沉淀区。为了在沉淀器中取得对上升流中污泥絮体颗粒的沉淀效果,三相分离器较主要的目的就是尽可能有效地分离从污泥床中产生的沼气。特别是在高负荷的情况下,在集气室下面设置反射板,是防止沼气通过集气室之间的缝隙逸出到沉淀室,另外挡板还有利于减少反应室内高产气量所造成的液体紊动。湖北uasb厌氧罐优势