您好,欢迎访问

商机详情 -

长沙生物膜厌氧反应器工艺

来源: 发布时间:2023年10月27日

发酵液酸化的原因:

在启动运行阶段,在产甲烷菌尚未得到大量的富集之前,采用了过高的容积负荷水解产酸菌倍增时间较短、繁殖较快,而产甲烷菌的倍增时间较长,繁殖较慢。在启动运行过程中,当产甲烷菌尚未充分富集起来之前,如果有机负荷过高,水解产酸菌的代谢旺盛,产甲烷菌来不及消耗产酸菌所产生的乙酸,从而会导致有机酸的积累,引起pH值下降。

在反应器运行过程中,如果反应器并未超负荷运行,却出现了酸化的现象,那么,很有可能是由于厌氧污泥出现了过度的流失。污泥流失所带来的严重后果是产甲烷菌的丧失。污泥流失尽管也丧失了产酸菌,但产酸菌能得到较快的增殖和补充,由于产甲烷菌数量的不足,不能及时地将乙酸转化为甲烷,从而导致酸化现象的发生。

在运行过程中厌氧消化条件发生了较大的变化与波动在反应器的运行过程中,如果厌氧消化条件(如有机负荷、温度、碱度、pH值以及有毒物质的浓度等因素)出现了较大的波动时,由于水解产酸菌的适应能力强,受到的影响较小;而产甲烷菌的适应能力弱对这些变化的因素更为敏感,从而会受到一定程度的抑制。在这种情况下,水解产酸菌产生的VFA不能全部被产甲烷菌所消耗,从而使厌氧消化系统内会出现有机酸的大量积累。 厌氧反应器的原理是利用微生物的代谢作用分解有机物,生成甲烷气等可再生能源。长沙生物膜厌氧反应器工艺

厌氧反应器

厌氧反应器运行监测指标:

(1)挥发性脂肪酸VFA<300mg/L,表示运行正常可增加容积负荷。VFA为300-500mg/L,表示运行正常,但不要提高负荷,要等到VFA降到300mg/L以下再提高容积负荷。VFA达到600mg/L,要引起警觉但此时仍可保持进水负荷不变。VFA达到800mg/L,应立即停止进水或减少进水量要等降到300mg/L以下,才能逐步恢复进水。

(2)pH值反应器中厌氧消化液的pH值应保持在6.5~7.5的范围内。厌氧出水的pH值应保持在6.8以上。当出水pH<6.5时,应pH值的发展趋势或适当减少进水量;当出水pH<6.2时,要停止进水,等待pH值恢复到6.5以上才能逐步恢复进水量。

(3)沼气产量瞬间的沼气产量会有较大变动但每小时的沼气产量大致是平稳的,要经常抽查每小时的沼气产量,沼气产量突然减少时要引起警觉。根据沼气产量可以推算出大致的COD去除率。

(4)COD去除率对于不同性质的废水,厌氧COD去除率会有所不同,应使COD去除率保持在正常值±5%的范围。COD去除率降到正常值的10%以下要给予密切关注。

(5)污泥沉降体积比选择一个固定的取样口,经常观察污泥沉降体积比,即发酵液中颗粒污泥沉降的体积分数,从污泥沉降体积比的变化情况往往可以直接而简便地了解到颗粒污泥的流失与增长情况。 长沙EGSB厌氧反应器供应商AMBR反应器是多室串联运行,至少有三个格室。

长沙生物膜厌氧反应器工艺,厌氧反应器

厌氧颗粒污泥活性高于絮状污泥的原因:

①在颗粒污泥共生细菌的群落中,不同功能菌之间的联结要比絮状污泥的更为紧密,基质的传质速率和种间氢的传移速率更快,能更快地完成H+向CO₂的转移,形成CH4的速率更快。

②在颗粒污泥中,由于发酵细菌、产乙酸菌和产甲烷菌各功能菌之间的联结更为紧密,且处于外层的发酵细菌和产乙酸菌对处于内层的产甲烷菌能够提供更好的保护,使产甲烷菌更能耐受pH值变化的冲击。而在絮状污泥中各个共生菌群之间的联结较为松散,产甲烷菌得不到很好的保护。

③在颗粒污泥中,菌体污泥所占比例较大,非菌体污泥所占比例较小,故其产甲烷的生物活性更高。而在絮状污泥中,不具生物活性的非菌体污泥所占的比例较大,菌体污泥相对较少,故絮状污泥产甲烷的活性较低。

厌氧颗粒污泥钙化预防措施:(1)控制进入废水的Ca2+和SO42-的浓度:在确保车间生产正常的前提下,尽量减少生产原料中Ca2+和SO42-的用量,或者采用能替代含钙的化学原料;(2)控制厌氧进水及出水的pH值:由于在pH值较高的废水中Ca2+容易沉积,因此,在保证厌氧进出水pH值及碱度正常的前提下,要适量减少碱的投加量,降低厌氧进水与出水的pH值。(3)经常更新反应器中的颗粒污泥,使反应器中的颗粒污泥始终能保持适中的数量和粒度(粒径);(4)维持反应器运行条件的稳定;(5)保证适当的水力停留时间和厌氧消化周期,以便有机酸能够得到更充分的消化;(6)采用水力负荷较高的厌氧反应器。IC PLUS厌氧反应器启动周期短。

长沙生物膜厌氧反应器工艺,厌氧反应器

关于厌氧反应器颗粒污泥的流失:

    颗粒污泥的沉降速度可达到18~100m/h,颗粒污泥反应器的三相分离器窄缝处的上升流速能超过18m/h的情况不多见,颗粒污泥通常都能比较容易的通过三相分离器的窄缝而返回反应器中,因此水力负荷对颗粒污泥流失所造成的影响较小。

    造成颗粒污泥流失的主要原因是产气负荷:

1)颗粒污泥同絮状污泥一样,也会因吸附微小的沼气气泡而产生抬升力,但是由于颗粒污泥比表面积小,与絮状污泥相比,颗粒污泥所受到的抬升力要小得多。因此,沼气的抬升力不是造成颗粒污泥流失的主要原因。但沼气气泡对密度较小的颗粒污泥或细微颗粒污泥的抬升作用仍是不可忽略的。

2)沼气气泡破裂时,在冲刷的作用下,即便颗粒污泥的沉降速度较大,也难以抵挡气泡破裂时产生的冲刷作用。因此沼气的冲刷作用是导致颗粒污泥流失的重要原因。

3)当颗粒污泥反应器中存在大量的絮状污泥时,颗粒污泥的原始核粒以及刚开始成长的较微小的颗粒污泥,往往被包裹在絮状污泥中。当絮状污泥流失时,他们会受到絮状污泥的裹挟而流失。当废水中固体悬浮物SS浓度较高时,SS对细微的颗粒污泥也会产生裹挟作用。因此絮状污泥和SS的裹挟作用是细微颗粒污泥流失的重要原因。 外循环厌氧反应器拥有高负荷。广东外循环厌氧反应器哪家好

折流板厌氧反应器结构简单、效果稳定。长沙生物膜厌氧反应器工艺

颗粒污泥形成学说:(1)晶核说:Lettinga认为,在厌氧污泥中存在无机盐构成的晶核,例如不溶性的CaCO3就是其中的一种。微生物围绕着这个晶核逐渐成长为颗粒污泥。(2)电荷中和说:细菌细胞的表面带负电荷,在金属正离子的作用下,细菌表面的负电荷被中和。由于减少了同性电荷之间的静电斥力,使得细菌能够互相凝聚成团,形成颗粒污泥。(3)胞外多聚物说:该学说是Wiegant在1987年提出的,主要论点可以归纳为以下几点:①废水中存在甲烷八叠球菌和甲烷丝菌,他们在生长过程中具有自然聚集成核的现象,还具有附着在其他颗粒物表面的能力。聚集与黏附的能力可以导致比较初的颗粒污泥核的形成。②颗粒污泥核的形成过程始终伴随着水力负荷和产气负荷的作用,水力负荷和产气负荷这两种作用力之和称为选择压。③由选择压引起的运动能产生剪切力,使密度较大的污泥核转化成球状的颗粒污泥。④选择压上升到一定程度时,会把絮状污泥洗出厌氧反应器。絮状污泥从反应器中被洗出的过程称为水力分级或水力筛选作用。⑤质子移位-脱水说:该学说是Tay等在2000年提出的,该学说认为,污泥颗粒化可分为细菌表面脱水、颗粒核形成、颗粒成熟及颗粒后成熟4个阶段。长沙生物膜厌氧反应器工艺